Training Module
Comprehensive training pipeline with metrics tracking and visualization for food segmentation.
What We Are Tracking
Core Metrics
- Loss Functions - Training and validation loss per epoch
- Segmentation Accuracy - Pixel-wise accuracy and mean IoU
- Learning Progress - Learning rate schedules and training time
- Model Performance - Validation metrics and best model checkpointing
Experiment Tracking
- Weights & Biases Integration - Hyperparameters, model architecture, and system metrics
- Visualization Outputs - Training curves, loss plots, and prediction visualizations
Tracking Architecture
Hybrid approach combining: - Local logging with Rich console output - Weights & Biases for cloud-based experiment tracking - File-based visualization saves - Model checkpoint management
This focuses on essential segmentation metrics while maintaining training pipeline simplicity.
src.segmentation.train
Trainer(lr=None, epochs=None, batch_size=None, base_dir=None, enable_profiler=None, init_wandb=True, prune_amount=0.2)
Initialize the Trainer and do experimental logging with Weights and Biases.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lr
|
float
|
Learning rate for the optimizer. |
None
|
epochs
|
int
|
Number of training epochs. |
None
|
batch_size
|
int
|
Batch size for training. |
None
|
base_dir
|
str
|
Project's root directory. |
None
|
enable_profiler
|
bool
|
Whether to enable PyTorch profiler. |
None
|
init_wandb
|
bool
|
Whether to initialize Weights and Biases. |
True
|
Source code in src/segmentation/train.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
calculate_iou(pred_mask, true_mask, num_classes=104)
Implements the Intersection over Union (IoU) metric for segmentation tasks.
Source code in src/segmentation/train.py
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
|
forward(x)
Forward pass through the model.
Source code in src/segmentation/train.py
164 165 166 |
|
remove_pruning()
Remove pruning from the model.
This method iterates through all modules in the model and removes pruning parameters if they exist. It is useful for restoring the original model state after pruning has been applied.
Source code in src/segmentation/train.py
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
|
train()
Execute the training loop with optional profiling and Weights and Biases logging.
Pipeline Steps : 1. Initialize the device for training (GPU or CPU). 2. Check if the model path is set. 3. Create profiler if enabled. 4. Loop through the number of epochs: 5. Train the model on the training dataset. 6. Calculate and log training metrics (loss, accuracy, IoU). 7. Validate the model on the test dataset. 8. Save the best model based on test loss. 9. Log metrics to Weights and Biases. 10. Finish Weights and Biases run.
Source code in src/segmentation/train.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
|
visualize_training_metrics()
Visualize training and testing loss & accuracy from saved model checkpoint Creates two side-by-side graphs: Loss comparison and Accuracy comparison
Parameters:
Name | Type | Description | Default |
---|---|---|---|
base_dir
|
Base directory for saving plots |
required | |
model_path
|
Path to the saved model checkpoint (.pth file) |
required | |
plots_path
|
Directory to save the plots |
required |
Source code in src/segmentation/train.py
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
|